Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2201151119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930664

RESUMO

Epilepsy is a devastating brain disorder for which effective treatments are very limited. There is growing interest in early intervention, which requires a better mechanistic understanding of the early stages of this disorder. While diverse brain insults can lead to epileptic activity, a common cellular mechanism relies on uncontrolled recurrent excitatory activity. In the dentate gyrus, excitatory mossy cells (MCs) project extensively onto granule cells (GCs) throughout the hippocampus, thus establishing a recurrent MC-GC-MC excitatory loop. MCs are implicated in temporal lobe epilepsy, a common form of epilepsy, but their role during initial seizures (i.e., before the characteristic MC loss that occurs in late stages) is unclear. Here, we show that initial seizures acutely induced with an intraperitoneal kainic acid (KA) injection in adult mice, a well-established model that leads to experimental epilepsy, not only increased MC and GC activity in vivo but also triggered a brain-derived neurotrophic factor (BDNF)-dependent long-term potentiation (LTP) at MC-GC excitatory synapses. Moreover, in vivo induction of MC-GC LTP using MC-selective optogenetic stimulation worsened KA-induced seizures. Conversely, Bdnf genetic removal from GCs, which abolishes LTP, and selective MC silencing were both anticonvulsant. Thus, initial seizures are associated with MC-GC synaptic strengthening, which may promote later epileptic activity. Our findings reveal a potential mechanism of epileptogenesis that may help in developing therapeutic strategies for early intervention.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epilepsia , Potenciação de Longa Duração , Fibras Musgosas Hipocampais , Convulsões , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/fisiopatologia , Ácido Caínico/farmacologia , Camundongos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiopatologia , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
2.
Exp Neurol ; 347: 113918, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748756

RESUMO

In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown. Using a pilocarpine-induced mice model of epilepsy, we showed that Gpc4 expression was significantly increased in the stratum granulosum of the dentate gyrus at 1 week after status epilepticus (SE). Using Gpc4 overexpression or Gpc4 shRNA lentivirus to regulate the Gpc4 level in the dentate gyrus, increased or decreased levels of netrin-1, SynI, PSD-95, and Timm score were observed in the dentate gyrus, indicating a crucial role of Gpc4 in modulating the development of functional MFS. The observed effects of Gpc4 on MFS were significantly antagonized when mice were treated with L-leucine or rapamycin, an agonist or antagonist of the mammalian target of rapamycin (mTOR) signal, respectively, demonstrating that mTOR pathway is an essential requirement for Gpc4-regulated MFS. Additionally, the attenuated spontaneous recurrent seizures (SRSs) were observed during chronic stage of the disease by suppressing the Gpc4 expression after SE. Altogether, our findings demonstrate a novel control of neuronal Gpc4 on the development of MFS through the mTOR pathway after pilocarpine-induced SE. Our results also strongly suggest that Gpc4 may serve as a promising target for antiepileptic studies.


Assuntos
Glipicanas/biossíntese , Fibras Musgosas Hipocampais/metabolismo , Pilocarpina/toxicidade , Transdução de Sinais/fisiologia , Estado Epiléptico/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Animais , Células Cultivadas , Glipicanas/antagonistas & inibidores , Masculino , Camundongos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Agonistas Muscarínicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Serina-Treonina Quinases TOR/antagonistas & inibidores
3.
Neurobiol Dis ; 158: 105446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280524

RESUMO

Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Epilepsia do Lobo Temporal/prevenção & controle , Fibras Musgosas Hipocampais/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Simulação por Computador , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/etiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Lítio , Antagonistas Muscarínicos/farmacocinética , Antagonistas Muscarínicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacocinética , Escopolamina/uso terapêutico , Convulsões/prevenção & controle
4.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153028

RESUMO

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Assuntos
Fibras Musgosas Hipocampais/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Colforsina/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
5.
PLoS One ; 15(10): e0240610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33049001

RESUMO

Presynaptic mitochondrial Ca2+ plays a critical role in the regulation of synaptic transmission and plasticity. The presynaptic bouton of the hippocampal mossy fiber (MF) is much larger in size than that of the Schaffer collateral (SC) synapse. Here we compare the structural and physiological characteristics of MF and SC presynaptic boutons to reveal functional and mechanistic differences between these two synapses. Our quantitative ultrastructural analysis using electron microscopy show many more mitochondria in MF presynaptic bouton cross-section profiles compared to SC boutons. Consistent with these results, post-tetanic potentiation (PTP), a form of presynaptic short-term plasticity dependent on mitochondrial Ca2+, is reduced by inhibition of mitochondrial Ca2+ release at MF synapses but not at SC synapses. However, blockade of mitochondrial Ca2+ release results in reduction of PTP at SC synapses by disynaptic MF stimulation. Furthermore, inhibition of mitochondrial Ca2+ release selectively decreases frequency facilitation evoked by short trains of presynaptic stimulation at MF synapses, while having no effect at SC synapses. Moreover, depletion of ER Ca2+ stores leads to reduction of PTP at MF synapses, but PTP is unaffected by ER Ca2+ depletion at SC synapses. These findings show that MF and SC synapses differ in presynaptic mitochondrial content as well as mitochondrial Ca2+ dependent synaptic plasticity, highlighting differential regulatory mechanisms of presynaptic plasticity at MF and SC synapses.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Oniocompostos/farmacologia , Compostos Organofosforados/farmacologia , Técnicas de Patch-Clamp , Tiazepinas/farmacologia
6.
Mol Psychiatry ; 25(6): 1215-1228, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30837688

RESUMO

Most antidepressants, including selective serotonin reuptake inhibitors (SSRIs), initiate their drug actions by rapid elevation of serotonin, but they take several weeks to achieve therapeutic onset. This therapeutic delay suggests slow adaptive changes in multiple neuronal subtypes and their neural circuits over prolonged periods of drug treatment. Mossy cells are excitatory neurons in the dentate hilus that regulate dentate gyrus activity and function. Here we show that neuronal activity of hippocampal mossy cells is enhanced by chronic, but not acute, SSRI administration. Behavioral and neurogenic effects of chronic treatment with the SSRI, fluoxetine, are abolished by mossy cell-specific knockout of p11 or Smarca3 or by an inhibition of the p11/AnxA2/SMARCA3 heterohexamer, an SSRI-inducible protein complex. Furthermore, simple chemogenetic activation of mossy cells using Gq-DREADD is sufficient to elevate the proliferation and survival of the neural stem cells. Conversely, acute chemogenetic inhibition of mossy cells using Gi-DREADD impairs behavioral and neurogenic responses to chronic administration of SSRI. The present data establish that mossy cells play a crucial role in mediating the effects of chronic antidepressant medication. Our results indicate that compounds that target mossy cell activity would be attractive candidates for the development of new antidepressant medications.


Assuntos
Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/psicologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiologia , Neurogênese/efeitos dos fármacos , Animais , Linhagem Celular , Depressão/patologia , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
7.
Proc Natl Acad Sci U S A ; 116(22): 10994-10999, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085654

RESUMO

In temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, relatively large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an "early detonation" mode and an increased probability of release compared with mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release, thus facilitating reverberant circuit activity.


Assuntos
Giro Denteado/fisiopatologia , Epilepsia/fisiopatologia , Fibras Musgosas Hipocampais , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Região CA3 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/fisiopatologia , Optogenética , Sinapses/metabolismo
8.
Neuropsychopharmacol Rep ; 38(4): 197-203, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280523

RESUMO

AIM: The identification of 7,8-dihydroxyflavone (DHF) as a small molecule agonist for tropomyosin-related kinase B (TrkB) facilitated understanding of the role of TrkB signaling in regulating higher brain functions. DHF can penetrate the blood-brain barrier after systemic administration and changes the performance of cognitive and emotional behavioral tasks. However, it is poorly understood how DHF modulates neuronal functions at cellular levels. Aiming to understand the cellular basis underlying DHF-induced modifications of the brain functions, we examined the effects of DHF on the hippocampal excitatory synaptic transmission. METHODS: Field excitatory postsynaptic potentials were recorded using hippocampal slices prepared from adult male mice. Effects of bath-applied DHF on the synaptic efficacy were examined. RESULTS: We found that DHF induced robust synaptic potentiation at the mossy fiber to CA3 synapse. DHF had minimal effects at other hippocampal excitatory synapses or at immature mossy fiber synapse in juvenile mice. The TrkB receptor blockers K252a and ANA-12 did not affect the DHF-induced synaptic potentiation. Drug screening revealed that relatively low concentrations of 2-aminoethoxydiphenylborane blocked the DHF-induced synaptic potentiation. CONCLUSION: Our results demonstrate that DHF selectively potentiates hippocampal mossy fiber synaptic transmission via a TrkB receptor-independent mechanism. This novel neuromodulatory effect of DHF may influence higher brain functions by itself or together with the activation of the TrkB receptor. The rapid induction of the potentiation implies its potential importance in the acute behavioral effects of DHF.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Flavonas/farmacologia , Fibras Musgosas Hipocampais/fisiologia , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/metabolismo , Receptor trkB/agonistas
9.
Neuroreport ; 29(16): 1384-1390, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30169428

RESUMO

Mossy fiber sprouting (MFS) and neuronal loss are important pathological features of chronic epilepsy closely related to the development of spontaneous recurrent seizures. However, the pathological mechanism of MFS remains unclear. Collapsin response mediator protein 2 (CRMP2) is a cytoplasmic protein highly expressed in the nervous system and is involved in axon/dendrite specification and axonal growth. It is possibly associated with the development of MFS. Lacosamide (LCM), a novel antiepileptic drug, was recently found to inhibit the CRMP2-mediated neurite outgrowth. Therefore, we studied the relationships between LCM, CRMP2, and MFS, seeking potential therapeutic targets for epileptogenesis and a better understanding of the mechanism of action of LCM. We used kainic acid to induce status epilepticus in an animal model and examined the resultant changes in protein expression by Western blot and changes in histology by specific staining for cell death and MFS. Our results showed that the expression level of CRMP2 was elevated and the expression level of phosphorylated CRMP2 (p-CRMP2) was reduced following status epilepticus. Administration of LCM not only reversed this effect but also suppressed spontaneous recurrent seizures and reduced MFS and loss of hippocampal neurons. This study reveals that, in addition to its antiseizure efficacy, LCM has a neuroprotective effect and inhibits the development of epilepsy. CRMP2 is possibly involved in the mechanism by which LCM suppresses MFS and is expected to be a new therapeutic target for treating epileptogenesis.


Assuntos
Anticonvulsivantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lacosamida/uso terapêutico , Fibras Musgosas Hipocampais/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Animais , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Ácido Caínico/toxicidade , Masculino , Camundongos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Fatores de Tempo
10.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225345

RESUMO

Action potentials propagating along axons are often followed by prolonged afterdepolarization (ADP) lasting for several tens of milliseconds. Axonal ADP is thought to be an important factor in modulating the fidelity of spike propagation during repetitive firings. However, the mechanism as well as the functional significance of axonal ADP remain unclear, partly due to inaccessibility to small structures of axon for direct electrophysiological recordings. Here, we examined the ionic and electrical mechanisms underlying axonal ADP using whole-bouton recording from mossy fiber terminals in mice hippocampal slices. ADP following axonal action potentials was strongly enhanced by focal application of veratridine, an inhibitor of Na+ channel inactivation. In contrast, tetrodotoxin (TTX) partly suppressed ADP, suggesting that a Na+ channel-dependent component is involved in axonal ADP. The remaining TTX-resistant Na+ channel-independent component represents slow capacitive discharge reflecting the shape and electrical properties of the axonal membrane. We also addressed the functional impact of axonal ADP on presynaptic function. In paired-pulse stimuli, we found that axonal ADP minimally affected the peak height of subsequent action potentials, although the rising phase of action potentials was slightly slowed, possibly due to steady-state inactivation of Na+ channels by prolonged depolarization. Voltage clamp analysis of Ca2+ current elicited by action potential waveform commands revealed that axonal ADP assists short-term facilitation of Ca2+ entry into the presynaptic terminals. Taken together, these data show that axonal ADP maintains reliable firing during repetitive stimuli and plays important roles in the fine-tuning of short-term plasticity of transmitter release by modulating Ca2+ entry into presynaptic terminals.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Moduladores de Transporte de Membrana/farmacologia , Fibras Musgosas Hipocampais/fisiologia , Canais de Sódio/efeitos dos fármacos , Veratridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/efeitos dos fármacos
11.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131968

RESUMO

Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model-with respect to seizures, cognitive impairment, affective deficits, and histopathology-to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.


Assuntos
Anedonia , Ansiedade , Comportamento Animal , Disfunção Cognitiva , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Giro Denteado/efeitos dos fármacos , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/fisiopatologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Humanos , Ácido Caínico/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/efeitos dos fármacos
12.
Mol Cell Neurosci ; 92: 82-92, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044951

RESUMO

We have synthesized a novel small molecule based on the pyrrolidinone-containing core structure of clausenamide, which is a candidate anti-dementia drug. The synthetic route yielded multi-gram quantities of an isomeric racemate mixture in a short number of steps. When tested in hippocampal slices from young adult rats the compound enhanced AMPA receptor-mediated signalling at mossy fibre synapses, and potentiated inward currents evoked by local application of l-glutamate onto CA3 pyramidal neurons. It facilitated the induction of mossy fibre LTP, but the magnitude of potentiation was smaller than that observed in untreated slices. The racemic mixture was separated and it was shown that only the (-) enantiomer was active. Toxicity analysis indicated that cell lines tolerated the compound at concentrations well above those enhancing synaptic transmission. Our results unveil a small molecule whose physiological signature resembles that of a potent nootropic drug.


Assuntos
Nootrópicos/farmacologia , Pirrolidinonas/farmacologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiologia , Nootrópicos/química , Pirrolidinonas/química , Ratos , Ratos Sprague-Dawley
13.
Brain Res ; 1701: 28-35, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025975

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has demonstrated antiepileptic efficacy, especially for mesial temporal lobe epilepsy (MTLE). Mossy fiber sprouting (MFS) is involved in the pathogenesis of MTLE, and Sema-3A and GAP-43 are pivotal regulators of MFS. This study investigated the effects of ANT-DBS on MFS and expression levels of Sema-3A and GAP-43 as a possible mechanism for seizure suppression. METHODS: Adult male Sprague-Dawley rats were randomly divided into four groups: (1) control (saline injection), (2) KA (kainic acid injection), (3) KA + Sham-DBS (electrode implantation without stimulation), and (4) KA + DBS (electrode implantation with stimulation). Video electroencephalography (EEG) was used to ensure model establishment and monitor seizure frequency, latency, and severity (Racine stage). Chronic ANT stimulation was conducted for 35 days in the KA + DBS group, and MFS compared to the other groups by quantitative Timm staining. Sema-3A and GAP-43 expression levels in the hippocampal formation were evaluated in all groups with western blot. RESULTS: The latency period was significantly prolonged and spontaneous seizure frequency reduced in the KA + DBS group compared to KA and KA + Sham-DBS groups. Staining scores for MFS in CA3 and dentate gyrus (DG) were significantly lower in the KA + DBS group. The KA + DBS group also exhibited decreased GAP-43 expression and increased Sema-3A expression compared to KA and KA + Sham-DBS groups. CONCLUSION: These results suggest that ANT-DBS extends the latent period following epileptogenic stimulation by impeding MFS through modulation of GAP-43 and Sema-3A expression.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Epilepsia/patologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Núcleo Celular/patologia , Estimulação Encefálica Profunda/métodos , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/patologia , Proteína GAP-43/metabolismo , Proteína GAP-43/fisiologia , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Masculino , Fibras Musgosas Hipocampais/patologia , Ratos , Ratos Sprague-Dawley , Convulsões/patologia , Semaforina-3A/metabolismo , Semaforina-3A/fisiologia
14.
Vitam Horm ; 107: 177-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29544630

RESUMO

Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn2+ have preferential affinity for δ-containing receptors. Thus, Zn2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders.


Assuntos
Encéfalo/metabolismo , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural , Neurônios/metabolismo , Neurotransmissores/metabolismo , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Ciclo Menstrual/sangue , Ciclo Menstrual/efeitos dos fármacos , Ciclo Menstrual/metabolismo , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/enzimologia , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Inibição Neural/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/sangue , Neurotransmissores/farmacologia , Receptores de GABA-A/química , Zinco/metabolismo
15.
Gen Physiol Biophys ; 37(2): 213-221, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29593127

RESUMO

The accumulation of intracellular ionic zinc and pharmaceutical compounds, like the antibiotic sulfamethoxazole, may contribute to various neuropathologies. Sulfamethoxazole and the drug trimethoprim, are inhibitors of enzymes involved in the synthesis of tetrahydrofolate and also of carbonic anhydrases. The inhibition of the latter enzymes, which are localized both intra- and extracellularly and have a key role in pH regulation, causes alkalinization that is associated with higher spontaneous transmitter release. Intense synaptic stimulation causes the entry of released zinc into postsynaptic neurons, through glutamate receptor channels or voltage dependent calcium channels. The aim of this study was to evaluate the effect of sulfamethoxazole (180 µM) on basal postsynaptic zinc and to compare it with that caused by two depolarizing media, containing high potassium or tetraethylammonium, which may induce long term synaptic plasticity. The studies were performed in brain slices from gestating rats, at the mossy fiber synapses from hippocampal CA3 area, using the zinc indicator Newport Green. In the presence of KCl (20 mM) and sulfamethoxazole (180 µM) the zinc signals were enhanced, unlike in tetraethylammonium (25 mM). After sulfamethoxazole the tetraethylammonium evoked zinc signal had reduced amplitude. Thus, the data suggests that sulfamethoxazole enhances transmitter release affecting synaptic zinc physiology.


Assuntos
Anti-Infecciosos/toxicidade , Fibras Musgosas Hipocampais/efeitos dos fármacos , Sulfametoxazol/toxicidade , Sinapses/efeitos dos fármacos , Zinco/metabolismo , Animais , Feminino , Fibras Musgosas Hipocampais/metabolismo , Técnicas de Cultura de Órgãos , Gravidez , Ratos , Ratos Wistar
16.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468192

RESUMO

Axonal spike is an important upstream process of transmitter release, which directly impacts on release probability from the presynaptic terminals. Despite the functional significance, possible activity-dependent modulation of axonal spikes has not been studied extensively, partly due to inaccessibility of the small structures of axons for electrophysiological recordings. In this study, we tested the possibility of use-dependent changes in axonal spikes at the hippocampal mossy fibers, where direct recordings from the axon terminals are readily feasible. Hippocampal slices were made from mice of either sex, and loose-patch clamp recordings were obtained from the visually identified giant mossy fiber boutons located in the stratum lucidum of the CA3 region. Stimulation of the granule cell layer of the dentate gyrus elicited axonal spikes at the single bouton which occurred in all or none fashion. Unexpected from the digital nature of spike signaling, the peak amplitude of the second spikes in response to paired stimuli at a 50-ms interval was slightly but reproducibly smaller than the first spikes. Repetitive stimuli at 20 or 100 Hz also caused progressive use-dependent depression during the train. Notably, veratridine, an inhibitor of inactivation of sodium channels, significantly accelerated the depression with minimal effect on the initial spikes. These results suggest that sodium channels contribute to use-dependent depression of axonal spikes at the hippocampal mossy fibers, possibly by shaping the afterdepolarization (ADP) following axonal spikes. Prolonged depolarization during ADP may inactivate a fraction of sodium channels and thereby suppresses the subsequent spikes at the hippocampal mossy fibers.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Sódio/metabolismo , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Tetrodotoxina/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos , Veratridina/farmacologia
17.
Can J Physiol Pharmacol ; 95(9): 1058-1063, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28654763

RESUMO

The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.


Assuntos
Região CA3 Hipocampal/citologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tetraetilamônio/farmacologia , Tolbutamida/farmacologia , Zinco/metabolismo , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Feminino , Canais KATP/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Gravidez , Ratos , Ratos Wistar , Sinapses/metabolismo
18.
Gen Physiol Biophys ; 36(3): 289-296, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28471347

RESUMO

The hippocampal mossy fibers contain a substantial quantity of loosely-bound zinc in their glutamatergic presynaptic vesicles, which is released in synaptic transmission processes. Despite the large number of studies about this issue, the zinc changes related to short and long-term forms of potentiation are not totally understood. This work focus on zinc signals associated with chemically-induced mossy fiber synaptic plasticity, in particular on postsynaptic zinc signals evoked by KCl depolarization. The signals were detected using the medium affinity fluorescent zinc indicator Newport Green. The application of large concentrations of KCl, 20 mM and 60 mM, in the extracellular medium evoked zinc potentiations that decreased and remained stable after washout of the first and the second media, respectively. These short and long-lasting enhancements are considered to be due to zinc entry into postsynaptic neurons. We have also observed that following established zinc potentiation, another application of 60 mM KCl only elicited further enhancement when combined with external zinc. These facts support the idea that the KCl-evoked presynaptic depolarization causes higher zinc release leading to zinc influx into the postsynaptic region.


Assuntos
Potenciais da Membrana/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Zinco/metabolismo , Animais , Células Cultivadas , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Cloreto de Potássio/administração & dosagem , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(3): 361-367, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-28302213

RESUMO

OBJECTIVE: To explore the effects of embryonic lead exposure on motor function and balance ability in offspring rats and the possible mechanisms. METHODS: An animal model of embryonic lead exposure was prepared with the use of pregnant Sprague-Dawley rats freely drinking 0.1% (low-dose group, LG) or 0.2% (high-dose group, HG) lead acetate solution. A normal control group (NG) was also set. The male offspring rats of these pregnant rats were included in the study, consisting of 12 rats in the NG group, 10 rats in the LG group, and 9 rats in the HG group. The offspring rats' motor function and balance ability were evaluated using body turning test and coat hanger test. Eight rats were randomly selected from each group, and immunohistochemistry and Timm's staining were employed to measure the expression of c-Fos and mossy fiber sprouting (MFS) in the hippocampus. RESULTS: The HG group had a significantly longer body turning time than the NG and LG groups (P<0.05), and the LG group had a significantly longer body turning time than the NG group (P<0.05). The HG group had a significantly lower score of balance ability than the NG and LG groups (P<0.05), and the LG group had a significantly lower score of balance ability than the NG group (P<0.05). The area percentage of c-Fos-positive neurons in the hippocampal CA1 region was significantly higher in the HG group than in the other two groups (P<0.05), and it was significantly higher in the LG group than in the NG group (P<0.05). The semi-quantitative scores of MFS in the hippocampal CA3 region and dentate gyrus were significantly higher in the HG group than in the other two groups (P<0.05), and they were significantly higher in the LG group than in the NG group (P<0.05). CONCLUSIONS: Embryonic lead exposure could impair the offspring rats' motor function and balance ability. These changes may be related to increased c-Fos expression in the hippocampal CA3 region and abnormal MFS in the hippocampal CA3 region and dentate gyrus.


Assuntos
Feto/efeitos dos fármacos , Chumbo/toxicidade , Atividade Motora/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Animais , Feminino , Hipocampo/química , Hipocampo/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Gravidez , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Sprague-Dawley
20.
J Neurosci ; 37(5): 1240-1256, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069922

RESUMO

Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. SIGNIFICANCE STATEMENT: Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity of matrix metalloprotease 3 (MMP-3), in contrast to NMDAR-dependent LTP regulated by MMP-9. Moreover, the induction of LTP was associated with an increase in MMP-3 expression and activity. Finally, we found that the digestion of hyaluronan, a principal extracellular matrix component, disrupted the MMP-3-dependent component of LTP. These results indicate that distinct MMPs might act as molecular switches for specific types of LTP.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Metaloproteases/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/farmacologia , Técnicas In Vitro , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Proteólise , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...